前言
The Ollama Python library provides the easiest way to integrate Python 3.8+ projects with Ollama.
Operating System: Ubuntu 22.04.4 LTS
参考文档
Install
pip install ollama
Usage
import ollama
response = ollama.chat(model='llama3.1', messages=[
{
'role': 'user',
'content': 'Why is the sky blue?',
},
])
print(response['message']['content'])
Streaming responses
Response streaming can be enabled by setting stream=True
, modifying function calls to return a Python generator where each part is an object in the stream.
import ollama
stream = ollama.chat(
model='llama3.1',
messages=[{'role': 'user', 'content': 'Why is the sky blue?'}],
stream=True,
)
for chunk in stream:
print(chunk['message']['content'], end='', flush=True)
API
The Ollama Python library’s API is designed around the Ollama REST API
Chat
ollama.chat(model='llama3.1', messages=[{'role': 'user', 'content': 'Why is the sky blue?'}])
Generate
ollama.generate(model='llama3.1', prompt='Why is the sky blue?')
List
ollama.list()
Show
ollama.show('llama3.1')
Create
modelfile='''
FROM llama3.1
SYSTEM You are mario from super mario bros.
'''
ollama.create(model='example', modelfile=modelfile)
Copy
ollama.copy('llama3.1', 'user/llama3.1')
Delete
ollama.delete('llama3.1')
Pull
ollama.pull('llama3.1')
Push
ollama.push('user/llama3.1')
Embed
ollama.embed(model='llama3.1', input='The sky is blue because of rayleigh scattering')
Embed (batch)
ollama.embed(model='llama3.1', input=['The sky is blue because of rayleigh scattering', 'Grass is green because of chlorophyll'])
Ps
ollama.ps()
Custom client
A custom client can be created with the following fields:
host
: The Ollama host to connect totimeout
: The timeout for requests
from ollama import Client
client = Client(host='http://localhost:11434')
response = client.chat(model='llama3.1', messages=[
{
'role': 'user',
'content': 'Why is the sky blue?',
},
])
Async client
import asyncio
from ollama import AsyncClient
async def chat():
message = {'role': 'user', 'content': 'Why is the sky blue?'}
response = await AsyncClient().chat(model='llama3.1', messages=[message])
asyncio.run(chat())
Setting stream=True
modifies functions to return a Python asynchronous generator:
import asyncio
from ollama import AsyncClient
async def chat():
message = {'role': 'user', 'content': 'Why is the sky blue?'}
async for part in await AsyncClient().chat(model='llama3.1', messages=[message], stream=True):
print(part['message']['content'], end='', flush=True)
asyncio.run(chat())
Errors
Errors are raised if requests return an error status or if an error is detected while streaming.
model = 'does-not-yet-exist'
try:
ollama.chat(model)
except ollama.ResponseError as e:
print('Error:', e.error)
if e.status_code == 404:
ollama.pull(model)
结语
第二百三十二篇博文写完,开心!!!!
今天,也是充满希望的一天。